Search results

1 – 2 of 2
Article
Publication date: 8 August 2018

Chuanhong Miao, Xican Li and Jiehui Lu

The purpose of this paper is to establish the grey relational estimating model of soil pH value based on hyper-spectral data.

Abstract

Purpose

The purpose of this paper is to establish the grey relational estimating model of soil pH value based on hyper-spectral data.

Design/methodology/approach

As to the uncertainty of the factors affecting the soil pH value estimation based on hyper-spectral, the grey weighted relation estimation model was set up according to the grey system theory. Then the linear regression correction model is established according to the difference and grey relation degree information between the estimated samples and their corresponding pattern. At the same time, the model was applied to Hengshan county of Shanxi province.

Findings

The results are convincing: not only that the linear regression correction model of grey relation estimating pattern of soil pH value based on hyper-spectral data is valid, but also the model’s estimating accuracy is higher, which the corrected average relative error is 0.2578 per cent, and the decision coefficient R2=0.9876.

Practical implications

The method proposed in the paper can be used at soil pH value hyper-spectral inversion and even for other similar forecast problem.

Originality/value

The paper succeeds in realising both the soil pH value hyper-spectral grey relation estimating pattern based on the grey relational theory and the correction model of the estimating pattern by using the linear regression.

Details

Grey Systems: Theory and Application, vol. 8 no. 4
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 14 July 2023

Guozhi Xu, Xican Li and Hong Che

In order to improve the estimation accuracy of soil organic matter, this paper aims to establish a modified model for hyperspectral estimation of soil organic matter content based…

Abstract

Purpose

In order to improve the estimation accuracy of soil organic matter, this paper aims to establish a modified model for hyperspectral estimation of soil organic matter content based on the positive and inverse grey relational degrees.

Design/methodology/approach

Based on 82 soil sample data collected in Daiyue District, Tai'an City, Shandong Province, firstly, the spectral data of soil samples are transformed by the first order differential and logarithmic reciprocal first order differential and so on, the correlation coefficients between the transformed spectral data and soil organic matter content are calculated, and the estimation factors are selected according to the principle of maximum correlation. Secondly, the positive and inverse grey relational degree model is used to identify the samples to be identified, and the initial estimated values of the organic matter content are obtained. Finally, based on the difference information between the samples to be identified and their corresponding known patterns, a modified model for the initial estimation of soil organic matter content is established, and the estimation accuracy of the model is evaluated using the mean relative error and the determination coefficient.

Findings

The results show that the methods of logarithmic reciprocal first order differential and the first-order differential of the square root for transforming the original spectral data are more effective, which could significantly improve the correlation between soil organic matter content and spectral data. The modified model for hyperspectral estimation of soil organic matter has high estimation accuracy, the average relative error (MRE) of 11 test samples is 4.091%, and the determination coefficient (R2) is 0.936. The estimation precision is higher than that of linear regression model, BP neural network and support vector machine model. The application examples show that the modified model for hyperspectral estimation of soil organic matter content based on positive and inverse grey relational degree proposed in this article is feasible and effective.

Social implications

The model in this paper has clear mathematical and physics meaning, simple calculation and easy programming. The model not only fully excavates and utilizes the internal information of known pattern samples with “insufficient and incomplete information”, but also effectively overcomes the randomness and grey uncertainty in the spectral estimation of soil organic matter. The research results not only enrich the grey system theory and methods, but also provide a new approach for hyperspectral estimation of soil properties such as soil organic matter content, water content and so on.

Originality/value

The paper succeeds in realizing both a modified model for hyperspectral estimation of soil organic matter based on the positive and inverse grey relational degrees and effectively dealing with the randomness and grey uncertainty in spectral estimation.

Details

Grey Systems: Theory and Application, vol. 13 no. 4
Type: Research Article
ISSN: 2043-9377

Keywords

1 – 2 of 2